A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence
نویسندگان
چکیده
A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملA velocity-estimation subgrid model constrained by subgrid scale dissipation
Purely dissipative eddy–viscosity subgrid models have proven very successful in large–eddy simulations (LES) at moderate resolution. Simulations at coarse resolutions where the underlying assumption of small–scale universality is not valid, warrant more advanced models. However, non-eddy viscosity models are often unstable due to the lack of sufficient dissipation. This paper proposes a simple ...
متن کاملA physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation
A physical-space version of the stretched-vortex subgrid-stress model is presented and applied to large-eddy simulations of incompressible flows. This version estimates the subgrid-kinetic energy required for evaluation of the subgrid-stress tensor using local second-order structure-function information of the resolved velocity field at separations of order the local cell size. A relation betwe...
متن کاملA localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamica...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کامل